Skip to main content

Posts

IP in Practice: IPv4 Workarounds

IPv4 has been dealing with burnout since 2011. Yet we work it to the ground by finding workarounds. Why? The Internet as we know it still runs on it. IPv6 is not as pervasive or widely accepted as IPv4 and often requires adding new infrastructure or reworking what is already in place. So far, the alternatives have extended the use of IPv4 beyond its intended design.  How have we continued to stretch IPv4? If you are studying networking, building a home lab, or managing large-scale networks, these techniques should ring a bell. This post will revisit four current IPv4 workarounds.  Workaround #1 - Private IP Addresses Instead of every server, device, and client getting their own public IP address and taking up space, private IP addresses provide reusable address spaces for local networks. These addresses are not directly accessible via the Internet. Routers will drop external traffic trying to directly access them.  To the outside world, only public IP addresses are...
Recent posts

IP in Practice: The Need for IPv6

 It is time for IPv6. Not just for our network infrastructure, but for this series. The IPv4 section has come to an end, and now it is time for a deep dive into IPv6. More than ever, it is time to consider systems that can handle heavier workloads, more devices, and fewer address limitations - AI agents, IoT devices, edge computing. This post will examine why we need IPv6 and why it is an important network solution.   Why do we need IPv6? We need more space. IPv6 literally increases the address space exponentially. The IPv6 address space is 2 128 total addresses, 3.4 followed by 38 zeroes. Technology is no longer limited to servers, office computers, and mobile devices. Today's systems integrate AI infrastructure, edge computing, IoT devices, cloud networking, virtual machines, and more. Simply, more devices mean more space.  We need more scalability. As more devices connect to systems, administrators need to consider not only the number but the distribution. System...

IP in Practice: Special IPv4 Addresses

We have already discussed three private ranges used in classful and classless subnetting. The list does not stop there. This post identifies five types of special IP addresses that you will encounter. By the end of this post, you should have a clearer understanding of how these addresses are used in troubleshooting, how they appear on certification exams, and how they shape the way traffic moves across the Internet. 1. Loopback Address (127.0.0.1) Every networked device has a loopback address. Most commonly, it is 127.0.0.1 . The loopback address is typically used to test internal connections. You may wonder, “Why do I need to know if my device can connect to itself? Shouldn’t it connect to other resources and the Internet?” Think about it this way. Before you walk out the door, you make sure you look presentable by taking a shower, brushing your teeth, ironing your clothes, and checking yourself in the mirror. Once everything looks good, you are ready to go. Similarly, your comput...

IP in Practice: Classless Addressing & Subnetting

 In the previous posts, we looked at what an IPv4 address is and how it is used.  Subnetting builds on that foundation and plays a major role in IP addressing, but many learners find it challenging at first.I was in the same boat at first. Now, it is a breeze. What has helped me, and how can you fly through subnetting? In this post, we will specifically focus on how classless addressing and variable length subnet masking is implemented within networks. If you would like to learn more about subnetting or need a refresher, see my other posts Subnets: Key to Network Organization   and Subnetting Tips .    Classful vs Classless What's the difference between these two addressing schemes? Let me ask you this: Have you ever tried on clothes and never could find the right size? It is too big or too small. The store doesn't have your size. What if you can get it tailor-made just for you?  Now imagine you could design a subnet the same way you design a custom sh...

IP in Practice: Public and Private IP Addresses

Do you speak another language? Personally, I love learning new languages, but one of the hardest parts is translation. When it comes to networking, it is something similar. Devices within our home and office networks do not directly go to the internet. There needs to be a "translator". What does this have to do with public and private IPv4 addresses? In this post, we will explore: IPv4 Addresses Private Ranges  The difference and teamwork between NAT and PAT Helpful troubleshooting commands such as ipconfig or ping A demo that puts it altogether.  (Link to topology here .) By the end of this post, you will see how public and private IP addresses work together in action.  IPv4 Address Private Ranges RFC1918 Private IP Address Ranges Class IANA Blocks Range Total Addresses A 10.0.0.0/8 10.0.0.0 - 10.255.255.255 16.7 million (16,777,216) ...

IP in Practice: IPv4 Address Structure & Classes

There are two main types of IP addresses: IPv4 and IPv6. Many of us are familiar with the first option. The first post in this series included an interactive section where you could test IP addresses. Stay tuned for IPv6. The numbers may seem random, but did you know your IP address matters? It matters for our privacy and could also matter to external actors if they can gain access to our systems. I, however, am talking about what it could reveal. Is your IP address private or public? How much does that affect the number of IP addresses that can be on a network? How are IP addresses organized into classes? In this post, I'll focus on answering each of these questions. Structure of an IPv4 Address Follows a dotted-decimal notation Has four octets Each octet has a value between 0 and 255, made up of 8 bits Has a total length of 32 bits in binary form What are I...